If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x^2)-12=0
a = 1; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·1·(-12)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*1}=\frac{0-4\sqrt{3}}{2} =-\frac{4\sqrt{3}}{2} =-2\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*1}=\frac{0+4\sqrt{3}}{2} =\frac{4\sqrt{3}}{2} =2\sqrt{3} $
| 35-n=45 | | 6x2+x–15=0 | | 0.2(x+20)=3(0.05x-2) | | 5d-4=6+3d | | 2x-20=x+6 | | 5/x=3/12 | | 7/3a=1 | | 8x+5-4X=3x+11 | | 31=-2y+31 | | z/4+1/2=z/3-1/6 | | r-1=2r-5 | | 3z/10+6=2 | | 7(1+6k)=1+6(6k-2) | | 23x=-13x−4 | | 9c+2=182 | | 9x+20+13x=180 | | 0.4u-1.2=2(3/40u+0.4) | | x^2-3x+4.5=Y-9.5 | | z/4+1/12=z/3-1/6 | | 2(x+10)=3(x+4) | | -9+r-4+6=3r+1 | | 15y+4y-2y-16y=5 | | 5x+2(14-x)=58 | | 8-2y=80 | | 6a-a=10 | | (4+g(-11=121 | | 3y-5=34 | | f(2)=12 | | 11d-10d-d+2d-d=18 | | 2(p+7=8 | | X2-x=870 | | X^2+11x–42=0 |